A Net Zero NHS: Plans for a Sustainable Tomorrow

The NHS, like many large organisations, is taking a proactive approach to reducing its carbon footprint by achieving Net Zero.

Net zero refers to the balance between the amount of greenhouse gases emitted and the amount removed from the atmosphere.

Achieving net zero emissions is a critical step in mitigating the impact of climate change. The NHS, as one of the largest employers in the world, has a substantial carbon footprint primarily due to energy consumption, transportation, and waste generation.

The Health and Care Act 2022 requires commissioners and providers of NHS services to specifically address the UK Net Zero emissions target.

In its report, Delivering a ‘Net Zero’ National Health Service, the NHS has set out two clear targets:

  • Achieve a net zero NHS by 2040 for emissions directly controlled by the NHS.
  • Achieve a net zero NHS by 2045 for emissions that the NHS can influence.

How will the NHS achieve Net Zero?

To achieve this, it will look at reducing emissions from the 3 scopes covered by The Greenhouse Gas Protocol, which are:

  • Scope 1 – direct emissions from sources that are directly owned and controlled by the NHS, e.g. anaesthetics, NHS fleet and leased vehicles, etc.
  • Scope 2 – indirect emissions from the generation of purchased energy, mostly electricity.
  • Scope 3 – all other indirect emissions that occur in producing and transporting goods and services, including construction, medical devices, staff commuting, etc.

In addition, as part of the NHS Carbon Footprint Plus, they will aim to reduce emissions from patient and visitor travel to and from NHS services, and medicines used at home.

Key Components of the NHS Net Zero Plans

  1. Optimising Estates: The NHS estate and its supporting facilities services comprises 15% of the organisation’s total carbon emissions profile(1). As a result, it will look at at a number of interventions to reduce emissions. These will include upgrading existing buildings and optimising building usage, as well as generating renewable energy on-site and building 40 new NHS Net Zero Carbon hospitals.
  2. Travel and Transport: Approximately 3.5% (9.5 billion miles) of all road travel in England relates to patients, visitors, staff and suppliers to the NHS, contributing around 14% of the organisation’s total emissions. To address this, it will look to transitioning its fleet to zero-emission vehicles. Other measures include reducing unnecessary journeys through preventative medicine and digital care, and enabling healthier, less polluting types of travel such as cycling and walking.
  3. Supply Chain: While the NHS does not control emissions directly from its many suppliers, it can use its considerable purchasing power to influence change. From reducing the use of single-use items in hospitals, to sourcing more local food suppliers, and transforming anaesthetic practice, the NHS will use an array of methods to optimise its carbon footprint. It will also push all suppliers to decarbonise their own processes and activities.

The Net Zero Emissions Journey

The NHS’s net zero plans underscore its dedication to addressing the global climate crisis and ensuring a sustainable future for generations to come. By focusing on energy efficiency, sustainable transportation, responsible procurement, waste reduction, and carbon offsetting, the NHS will be able to make significant reductions in emissions.

However, the nature of its commitment means that its Net Zero journey will take it far beyond its medium-term targets, with innovation in products and services continuing to enable improvements on an open-ended basis.

How we can help

We are already helping NHS hospitals to reduce their carbon footprint in a number of ways:

  1. By supplying reusable surgical instruments with a much lower cardon footprint than disposables – click here for more information
  2. By supplying super-absorbent mats that reduce the amount of waste generated through producing the mats and disposing of them compared to inco pads and less absorbent mats – click here for more information
  3. By offering workplace exposure monitoring services that help to identify anaesthetic leaks and thus mitigate losses that escape to atmosphere – click here for more information

If you would like to talk to the Cairn Technology team about how we can help your hospital with its Net Zero plans, please call us on 0333 015 4345 or click here to contact us via web form and we will be happy to help.

 

(1) All statistics in this article are drawn from https://www.england.nhs.uk/greenernhs/wp-content/uploads/sites/51/2022/07/B1728-delivering-a-net-zero-nhs-july-2022.pdf

 

What is a Clean Air Zone: Which Hospitals Are In Clean Air Zones?

Local authorities are introducing clean air zones in towns cities across the UK.

What is a Clean Are Zone?

Clean Air Zones are designated areas where authorities will take targeted action to improve the local air quality. The measures mainly involve targeting vehicle emissions with charges for any vehicles that exceed certain emission standards. There may also be reduced speed limits in clean air zones, which have been shown to have an impact on air quality.

Why Are Authorities Introducing Clean Air Zones?

The Government’s Clean Air Zone framework states that clean air zones are being introduced with a specific focus on reducing NO2 concentrations.

What is NO2?

NO2 is nitrous dioxide, a harmful chemical compound that’s mainly formed in the combustion of fossil fuels. You can read our full guide to the health risks associated with NO2.

But NO2 is not the only hazardous or toxic air pollutant found in vehicle exhaust fumes. Clean air zones can also help reduce levels of particulate matter, including PM10 and PM2.5.

The Different Types of Clean Air Zones

There are four types of clean air zones – Class A, Class B, Class C, and Class D. Each class denotes the type of vehicle to which restrictions apply:

  • Class A – Buses, coaches, taxis, private hire vehicles.
  • Class B – All of the vehicles included in Class A, along with heavy goods vehicles.
  • Class C – All of the vehicles included in Class A and Class B, along with vans and minibuses.
  • Class D – All of the vehicles included in Class A, Class B, and Class C, as well as cars. In Class D clean air zones, the local authority may also include motorcycles.

Which UK Cities Have Clean Air Zones?

Currently, seven UK cities have clean air zones:

  • Bath – Class C, 1.2 square miles.
  • Birmingham – Class D, 2.96 square miles.
  • Bradford – Class C, 9.35 square miles.
  • Bristol – Class D, 1.18 square miles.
  • Portsmouth – Class B, 1.16 square miles.
  • Sheffield – Class C, 0.9 square miles.
  • Tyneside (Newcastle and Gateshead) – Class C, 0.94 square miles.

Greater Manchester is also planning to introduce a clean air zone, though it’s not yet apparent what class this zone will be, or how big an area it will cover.

In addition to this, London has a separate system of low and ultra-low emissions zones (ULEZ). There is also a separate system of low emission zones (LEZ) in certain Scottish cities.

The Importance of Clean Air Zones

Clean air zones may have a positive impact on public health. For some years now there have been serious concerns about the effects of air pollution on vulnerable populations – particularly in healthcare settings.

One report found that 25% of UK hospitals are located in areas with dangerously high levels of air pollution. A further study found that 60% of hospitals and NHS facilities in London are in areas that exceed air pollution limits.

Which UK Hospitals Are in Clean Air Zones?

To find out which UK hospitals are in Clean Air Zones, check this RAC Foundation clean air schemes map. In some areas there may be certain exemptions for hospital patients driving in clean air zones.

In Bristol, for example, residents do not have to pay to drive in the zones if they qualify for NHS travel costs support. This includes people on benefits such as universal credit, income support, and jobseekers allowance.

Is Your Hospital in an Area With High Pollution Levels?

If your hospital or healthcare setting is not located in a clean air zone, then you may have concerns about the pollution levels in your area, and the effects they may be having on staff, patient, and visitor health.

Cairn Technology can help you address the air quality in your hospital. We can provide specialist air quality monitoring schemes in any areas of your hospital where vulnerable patients congregate, as well as any areas where there may be exposure risks for your staff.

We also stock hospital-grade air filtration systems which can help you significantly improve the air quality in your hospital – and quickly.

Our Blueair HealthProtectTM air purifiers are fitted with advanced HEPASilent technology. This is capable of catching 99.97% of particles down to 0.1 microns, which includes PM2.5 fine air particles. But at the same time, they’ll capture many other hazardous and toxic air pollutants. They can also capture and kill 99% of viruses and bacteria.

Take a look at our specialist air purification systems for hospitals.

DAS 2024 – Decontamination and Sterilisation Conference

Is DAS 2024 already in your calendar? If you are a decontamination manager or lead, or part of the sterile services team then this is an event not to be missed.

Taking place on 6th February at the National Conference Centre in Birmingham, this transformative conference aims to shape the future of decontamination and sterilisation.

DAS 2024 Speakers and Workshops

Hosting a range of speakers including Trevor Garcia, Chairman of the Institute of Decontamination Sciences, and Sharon Fox, Head of Decontamination at University Hospital Birmingham NHS, talks will cover a range of topics from developing an effective staff competency framework to best practise for patient safety.

There will also be 15 workshops throughout the day, exploring topics including:

  • the role of the decontamination lead,
  • innovations in ultrasound decontamination,
  • advanced endoscope decontamination, and
  • the role of surface disinfection.

Other benefits for Decontamination Professionals

As a delegate, you can access a host of other benefits:

  • earn 7+ hours of CPD Accredited Points for your Annual Assessments,
  • interact with leaders in decontamination and sterilisation,
  • connect with professionals and stakeholders in the field, and
  • shape practices in decontamination and sterilisation.

Interested in best practice and products?

Come and see us on stand B12 to find out why decontamination and CSSU managers across the UK specify our products and services.

  • Stille Surgical Instruments

Come and handle our range of Stille surgical instruments, which are warrantied for 30 years.

You’ll be able to see how these instruments have been carefully designed to optimise longevity through ease of cleaning and maintenance. That’s why they offer exceptional precision, strength and durability despite decades of use.

Covering a wide range of specialisms from general and orthopaedic surgery to cardiothoracic, plastic surgery and more, they can be the stalwarts of your instrument sets for years to come.

To find out more about our Stille surgical instruments click here.

  • COSHH Monitoring for Endoscopy

Our workplace exposure monitoring helps endoscopy departments to achieve and maintain their annual JAG accreditation.

This provides important evidence that an NHS or independent UK endoscopy service is competent to deliver against the criteria set out in the JAG standards and fulfil IHEEM annual AE(D) audit part 9.6.

Our monitoring of endoscope decontamination rooms is carried out to assess staff exposure to peracetic and acetic acid.

It enables our customers to demonstrate that their control measures are keeping any exposure within required limits, as stated in regulation 10 of the Control of Substances Hazardous to Health 2002 Regulations (COSHH).

To find out about our monitoring service for endoscope decontamination rooms click here.

Want to attend the Decontamination and Sterilisation Conference 2024?

To find out more about the DAS 2024 speakers, agenda and how to register just click here now.

We look forward to seeing you at the conference!

 

Health and Wellbeing and Indoor Environmental Quality in Buildings – A Guide to BS 40102-1:2023

BS 40102-1:2023 – Health and Wellbeing and Indoor Environmental Quality in Buildings is a new code of practice which launched in April 2023.

In this post we’ll explain what BS 40102-1:2023 entails and discuss how you can meet the new regulations in your workplace.

What is BS 40102?

This new code of practice outlines a monitoring and reporting strategy for assessing wellbeing and indoor environmental quality (IEQ) of non-domestic buildings. It establishes a rating system for benchmarking the quality of the:

  • Air
  • Light
  • Thermal comfort
  • Acoustics and soundscape

With these benchmark scores, facility managers can identify any problematic areas and make any necessary improvements.

BS 40102 applies to all forms of non-domestic buildings, existing or new.

Why Has ‘Health and Wellbeing and Indoor Environmental Quality in Buildings’ Been Introduced?

The BSI Group acknowledges that previous regulations, coupled with certain commercial pressures, encouraged designers, builders, and facility managers to prioritise energy efficiency. All too often, a focus on energy efficiency means that the health and wellbeing of a building’s occupants gets overlooked. For instance, a building might be constructed with efficient insulation, but with little thought given to the quality of ventilation and light levels.

These new standards will help facility managers and others improve the IEQs of the buildings they oversee. Improving IEQ can help reduce operating costs through increasing energy efficiency. But for hospitals and other healthcare settings, addressing IEQ can help improve staff and patient health and wellbeing while contributing to infection prevention and control.

BS 40102 Air Quality Standards

When it comes to air quality, BS 40102 outlines rating systems for:

Example Indoor Environmental Quality Benchmarks

Below are the BS 40102 rating systems for two forms of particulate matter – PM2.5 and PM10.

PM2.5

Level Description 24 Hour Average (μg/m3)
0 Very High ≥32
1 High 16 – <32
2 Acceptable 10 – <16
3 Low 5 – <10
4 Very Low <5

 

PM10

Level Description 24 Hour Average (μg/m3)
0 Very High ≥68
1 High 46 – <68
2 Acceptable 30– <46
3 Low 10 – <30
4 Very Low <10

 

How Cairn Technology Can Help You Meet BS 40102 Regulations

We can measure the air quality throughout your healthcare setting and monitor your staff’s exposure levels to any potentially harmful substances. As well as the hazardous pollutants covered by BS 40102, we can also test for levels of sevoflurane, isoflurane, Entonox, and more. This will help you understand your risk levels so you can devise an air quality solution that works for you. Head here to learn more about our bespoke air quality monitoring services.

We also stock a range of specialist air purification systems. Our Blueair HealthProtectTM  air purifiers are fitted with advanced HEPASilent technology. This is capable of catching 99.97% of particles down to 0.1 microns, including PM2.5 fine air particles, as well as VOCs, dust, mould, and up to 99% of viruses and bacteria. Browse our full range of hospital grade air purifiers.

Acetic Acid Medical Uses, Hazards and Exposure Limits

Acetic acid is a clear and colourless organic liquid with a strong vinegary odour. Household vinegar is about 5% acetic acid and 95% water.

In this post we’ll examine some of the risks associated with acetic acid and discuss some of the ways you can manage these risks in your workplace.

Medical Uses for Acetic Acid

Acetic acid has many applications. In the medical sector, it can be used in the manufacture of vitamins, antibiotics, hormones, and other chemical products.

Acetic Acid Hazards

The form of acetic acid that’s widely used as a raw material and a solvent in industrial, manufacturing, medical and pharmaceutical processes and is known as glacial acetic acid. It’s a colourless and corrosive liquid at 99.5% concentration.

It’s very unlikely that any consumers, patients, or other members of the public will ever come into contact with glacial acetic acid. However, as it’s so widely used in a variety of manufacturing processes, glacial acetic acid does pose occupational exposure risks.

Acetic Acid Exposure Risks

Occupational exposure to high concentrate acetic acid through inhalation, skin contact, and eye contact can result in:

  • Eye, nose, and throat irritation.
  • Possible damage to lungs, eyes, and skin.
  • Pharyngeal edema.
  • Chronic bronchitis.

Acetic Acid Exposure Limits

Health and safety bodies set standard exposure limits for glacial acetic acid. For example, the Health and Safety Executive (HSE) sets a long-term workplace exposure limit (WEL) of 10 ppm or 25 mg.m³ over an eight-hour time weighted average (TWA) reference period. Meanwhile, the short-term exposure limit is 20 ppm or 50 mg.m³ over a 15-minute reference period.

How to Manage the Occupational Exposure Risks of Acetic Acid

Here are some measures that will help you manage the exposure risks of acetic acid in your workplace:

  • Wear appropriate PPE when using or transporting acetic acid (gloves, goggles, face mask). Read our full guide to the key factors you should consider when selecting PPE.
  • Follow the manufacturer’s instructions in regard to how you store and transport acetic acid, paying particular attention to the temperature at which you store your supply.
  • Only use acetic acid in clean and well-ventilated areas. Again, the manufacturer may recommend air quality precautions to take, including the number of air changes per hour you should implement.
  • In the event of a spillage, acetic acid is fully miscible in water. So you may have to use a specialist chemical spill kit to safely clean up the spillage.
  • Any staff who’ll be handling and using acetic acid should receive full training on the possible hazards, on managing the risks, and on the steps to take in the result of a spillage.

 

Understand the Acetic Acid Occupational Exposure Risks in Your Workplace

Our workplace exposure monitoring services will help you identify the acetic acid exposure risks wherever your staff might work with acetic acid in your workplace. Following our expert consultation, you’ll get a detailed report and actionable advice on the measures you can take to meet your COSHH obligations and safeguard your staff’s health and wellbeing.

Learn more about our specialist workplace exposure monitoring services.

 

Decontamination of Endoscopes and Reusable Medical Devices

In this post, we’ll take a closer look at the specific decontamination processes that should be used for endoscopes and other reusable medical devices.

Levels of Decontamination

There are three levels of decontamination for medical devices: cleaning, sterilisation, and disinfection.

Every individual piece of medical equipment carries a different level of contamination risk – low, medium, or high. The level depends on how and where a device is used, and it also determines the appropriate decontamination procedure.

Read our full guide to the three levels of decontamination for infection control.

General Principles of Decontamination of Endoscopes

  • Endoscopes come into contact with a patient’s intact mucous membranes, and they can sometimes breach gut mucosa. Endoscopes are also they’re likely to be contaminated with virulent or transmissible organisms. This means that endoscopes carry a medium to high infection risk.
  • Because of the high infection risk, endoscopes will need to be cleaned and disinfected before use. Depending on their intended use, some endoscopes may need to go through an additional sterilisation process.
  • Following decontamination, endoscopic equipment should be labelled and dated to confirm it’s clean and ready for use.
  • Decontamination of endoscopes should only be carried out by staff who have been adequately trained in the correct procedures.
  • To prevent cross-contamination, in the designated room for endoscopic decontamination, there should be a one-way flow between dirty returns and clean dispatch areas.
  • There must be clear physical separation of clean and dirty procedures and areas, with specific handling, storing, and processing procedures for each area. Ideally, there’ll be two separate rooms – a dirty room, and a clean room.

Detergents and Disinfectants for Decontaminating Endoscopes

  • To decontaminate endoscopes, use purpose-designed washers with single-use disinfectants. Start with a manual cleaning stage to ensure the endoscopes are visibly clean but note that manual disinfection processes are not suitable for endoscopes.
  • Many best practice guidelines discourage the use of aldehyde- and alcohol-based disinfectants. Such disinfectants have fixative properties, which could bind certain proteins in the endoscope channels.
  • Instead, only use detergents and disinfectants that are compatible with both the washer and the endoscope.
  • Follow the detergent and disinfectant manufacturers’ instructions exactly, paying particular attention to the temperature and concentration recommendations.

Water Used for Decontamination

  • Any water used in an endoscope washer disinfector should be free of particulate and chemical contamination, as well as any micro-organisms.
  • If your local water supply delivers hard water, you may need to add in-line water softeners.
  • Test the final rinse water at least once a week for microbiological levels.

Drying and Storing Endoscopes

  • Decontaminated endoscopes should be stored separately from dirty endoscopes, ideally in a separate room.
  • To reduce the risk of contamination, use dedicated endoscope drying and storage cabinets that are capable of delivering high-efficiency particulate filtered air (HEPA) at the correct temperature and flow rate.
  • Never use alcohol solutions to assist in drying endoscopes, due to the fixative properties.

PPE for Staff Carrying out Endoscopy Procedures

  • Any staff carrying out endoscopy procedures, along with all staff involved in endoscope decontamination, should wear the appropriate personal protective equipment (PPE).
  • PPE procedures should advise on what PPE to use and where. They should also advise on the storage, application, and removal of equipment to reduce cross infection.
  • You can read our full guide to PPE considerations.

Effective Decontamination For Infection Control in Endoscopy

The chemicals used in decontamination procedures can be harmful to human health. So all staff involved in endoscopy must comply with the Control of Substances Hazardous to Health (COSHH) Regulations wherever these chemicals are used.

Our workplace exposure monitoring services will help you identify the exposure risks for your endoscopy staff. Following the consultation, you’ll get a detailed report and actionable advice on the measures you can take to safeguard your staff’s health and wellbeing.

Learn more about our specialist workplace exposure monitoring services.

How Does Infection Spread in a Hospital?

In this post we’ll discuss how infections spread in hospitals and explore some ways you can prevent and control infections in your hospital.

Ways Infections Spread in Hospitals

Most hospital-acquired infections (HAIs) spread in one of two ways:

  • As a result of treatment.
  • From person-to-person, or via another communicable disease vector (pathogens on a surface, or in the air, for example).

You can read our guide to the most common hospital-acquired infections.

How Infections Spread as a Result of Treatment

Some hospital-acquired infections can spread as a direct result of certain medical treatments.

Examples include:

  • Surgical Site Infections (SSIs) – Invasive procedures involve making incisions in a patient’s skin. Though such procedures are performed in highly controlled sterile environments, it’s possible for incision wounds to get contaminated by microorganisms from the patient’s own body, or from outside sources.
  • Clostridium difficile infections (CDIs) – diff bacteria can exist harmlessly in the bowel. But a course of antibiotics can sometimes cause a bacterial imbalance in the gut, triggering a CDI.

How Communicable Diseases Spread in Hospitals

A patient or a member of staff might bring an existing infection into a healthcare setting such as a hospital. Or a patient may develop an infection during their hospital stay while receiving treatment for an unrelated condition.

These are communicable diseases, and they can spread in a number of ways:

  • From Person-to-Person – Coughs, sneezes, and even touches can spread viruses and bacteria from person to person. CDI, for example, is a common hospital-acquired infection because a major symptom is diarrhoea, which can act as a vector for the spread of bacteria. And of course, during the 2020 pandemic it became clear just how quickly Covid-19 can spread from person-to-person in a hospital.
  • Indirect Contact – Viruses, bacteria, and other pathogens can survive for hours, or even days, on surfaces and inanimate objects. A patient may cough or sneeze into their hand. If they then use a doorhandle or a light switch, any staff member or patient who subsequently touches that item may pick up their germs. And if they then touch their mouth, nose, or eyes, they may introduce the germs into their bloodstream.
  • Contamination – Finally, eating or drinking contaminated food or water can spread communicable diseases. E. coli, for example, is a common hospital-acquired infection, and it can be contracted from eating undercooked meat.

How To Prevent The Spread of Diseases in a Hospital

The National Institute for Health and Care Excellence (NICE) issued recommendations that could help prevent SSIs in hospitals. These include a series of steps for the preoperative phase (including showering and nasal decolonisation), recommendations for staff and patient theatre wear, and a series of checks to make both before and after the procedure. Read the full NICE guidelines for preventing SSIs here.

When it comes to controlling communicable diseases, hospitals must follow the standard infection control precautions (SICPs):

These include:

  • Patient placement – Perform a comprehensive infection risk assessment for each patient, and isolate patients with a high risk of cross-infection.
  • Hand hygiene – Follow a specific hand-washing technique to thoroughly clean your hands at key touchpoints – such as before and after interacting with a patient and their surroundings. Also advise patients to follow good hand hygiene guidelines and provide plenty of handwashing stations throughout your hospital.
  • Personal protective equipment (PPE) – There should be clear procedures for what PPE to use and when. You should also have procedures for storing, applying, removing, and disposing of PPE.
  • Cleaning – Commit to safe management of both care equipment and the care environment. Thorough cleaning should take place regularly and on an ongoing basis. You should also have specialist procedures for cleaning, disinfection, and sterilization in the event of outbreaks, and for high-risk equipment and environments.

Read our full guide to standard infection control precautions in hospitals and healthcare settings.

Control the Spread of Hospital-Acquired Infections

At Cairn Technology, we’ve been helping both NHS and private hospitals prevent and control infections for over 20 years.

We can help you with:

To discuss how we can help you prevent and control infection in your hospital, get in touch to talk to one of our friendly experts today.

 

Entonox Monitoring in Maternity Departments

Entonox – also referred to as N20, or “gas and air” – is a painkiller that’s used in multiple healthcare settings, including maternity departments. Though it provides effective short-term pain relief, there are some risks to using Entonox.

Short Term Entonox Exposure Risks

Short-term exposure to Entonox can cause dizziness, sleepiness, nausea, and hallucinations.

Long Term Entonox Exposure Risks

Long-term exposure to Entonox can affect the body’s ability to absorb vitamin B12, which can cause damage to nerves and red blood cells. This can lead to neurological conditions, infertility, and even miscarriage.

How Big Are The Risks of Entonox Exposure?

If patients use Entonox only as advised, then the short-term effects should pass quickly, and there should be no long-term health risks. However, there are concerns about hospital staff’s occupational exposure to Entonox – particularly among midwives in maternity care.

Entonox Exposure Risks for Midwives

The risks are particularly high for midwives not just because of the widespread use of Entonox in maternity care, but also because of the nature of their work. It’s common for midwives to work 12-hour shifts, several days in a row. To protect patient privacy, they’ll work with the door closed, which will lead to poor air circulation. Plus, compared to other areas of the hospital, labour wards are less likely to be fitted with sophisticated air purification systems.

How to Manage the Risk of Entonox Exposure in Maternity Departments

Maternity wards should routinely test their staff for their exposure to potentially hazardous substances like Entonox.

In March 2023, the NHS released new guidance on minimising long-term exposure to nitrous oxide in healthcare settings.

The guidance suggests that hospitals should only stop using Entonox as “a measure of last resort and only following appropriate risk assessment, clinical consultation, and mitigation.” Their recommendations include:

  • Environmental ventilation.
  • Staff training on positioning relative to exhaust N20, COSHH risk assessment and controls, and training in administration of Entonox.
  • Awareness and review of monitoring results.

 

The efficacy of these mitigations must be demonstrated by monitoring exposure to N20.

How We Can Help You Reduce Occupational Entonox Exposure in Your Maternity Department

At Cairn Technology, we routinely support both NHS and private hospitals.

Here’s how we can help you control your staff’s occupational exposure to Entonox in your maternity department:

  • Exposure Monitoring – Cairn Technology adopt a personal sampling technique to monitor your staff’s exposure levels to N20. Once used, personal passive sampling tubes are analysed followed by a comprehensive report, including recommendations and actions you can take to reduce exposure risks in your hospital.

Get in touch to discuss how we can help you manage the risks of Entonox in your maternity department.

What Is The Purpose of Exposure Monitoring via Air Sampling?

The air in hospitals and healthcare settings can contain numerous potentially hazardous substances.

Hazardous Substances in Hospitals and Healthcare

Common hazardous substances found in hospitals might include:

Short-term exposure to these substances can cause a range of symptoms, including dizziness, nausea, headaches, tightness of chest, and breathing difficulties. Long-term exposure can result in more serious health conditions, including chronic respiratory problems, and even some cancers.

What is the Purpose of Exposure Monitoring via Air Sampling?

Exposure monitoring via air sampling ensures that hospitals and healthcare settings fulfil their COSHH obligations wherever staff are exposed to hazardous substances.

Control of Substances Hazardous to Health (COSHH) is a UK law requiring employers to prevent or reduce workers’ exposure to certain hazardous substances. The law regulates workplace exposure limits (WELs) for numerous substance.

The problem is that most of these substances are colourless and odourless. Staff and patients may get exposed to harmful quantities without even realising it. This also makes leaks harder to detect, which means staff and patients may inhale harmful substances for days, weeks, or months before anyone realises there’s a problem.

Plus, in certain healthcare settings, there may be consistently low levels of these substances in the atmosphere. Staff may experience a feeling of discomfort without quite recognising that something’s wrong. But over the long-term, their exposure to these substances may result in some serious health conditions.

Air Sampling vs. Air Monitoring

Air sampling and air monitoring are two techniques that air quality consultants might use to test staff’s exposure to hazardous substances.

What is Air Sampling?

The air quality consultant takes a sample of the air in an environment. This provides a snapshot of the air quality as it was at that time. Air quality consultants will likely take samples from numerous locations around a healthcare facility so as to identify any high-risk areas.

What is Air Monitoring?

This is a slower process that takes place over a longer period of time. Air monitoring provides insights into how the air quality in an environment changes over time, which can help air quality consultants determine the root causes of contamination events.

For more information, you can read our essential introduction to how the air quality monitoring process works.

Specialist Workplace Exposure Monitoring Services

We offer specialist workplace exposure monitoring for hospitals and other healthcare settings. We’ll help you ensure you fulfil your COSHH obligations wherever your staff are exposed to hazardous substances.

Our air quality consultants employ both continuous monitoring and personal sampling techniques. With this approach, we can demonstrate how levels in the workplace atmosphere vary over the monitoring period. We’ll then prepare a comprehensive report, including detailed discussions and actionable recommendations based on our findings.

We have extensive experience in working closely yet unobtrusively with:

  • Operating theatre departments
  • Endoscopy suites, and endoscope decontamination units
  • Pathology laboratories
  • Dental suites
  • Maternity departments
  • Fracture clinics and orthotic laboratories
  • Radiology departments

We can also monitor for traffic pollution in public areas of your hospital, including your wards and waiting rooms.

Want to learn more about our workplace exposure monitoring services? Talk to one of our air quality experts today, or get in touch for a free quote.

Why is Air Quality Monitoring Important?

Everyone knows that breathing hazardous substances or polluted air is bad for your health. But few seem to realise just how serious air pollution can be, and just how many hazardous substances can linger in the air we breathe.

Hazardous and Toxic Air Pollutants

The air can be full of hazardous and toxic air pollutants that are known or suspected to be harmful to health and the environment.

Examples include:

  • Particulate matter
  • Nitrogen oxides
  • Ammonia
  • Volatile organic compounds (VOCs)
  • Sulphur dioxide

What Causes Hazardous Air Pollutants?

Many of these pollutants are caused by human activity. Particulate matter and nitrogen oxides, for example, are created by road traffic and by certain industrial and agricultural processes. Ammonia is released by the spreading of fertilisers, and by certain waste management processes. VOCs are found in many everyday cleaning and cosmetic products.

The Impact of Pollutants on Human Health

When inhaled, hazardous and toxic air pollutants can affect human health in a number of ways.

Particulate matter, for example, can be so small that, when inhaled, they enter the bloodstream. And once they’re in the bloodstream, they may end up lodged in the heart, lungs, brain, and other organs. So prolonged exposure to particulate matter can aggravate existing conditions, including asthma, allergies, and other respiratory conditions.  Long-term exposure can lead to more serious, or even terminal, lung conditions.

Inhaling VOCs can also exacerbate allergies, asthma, and respiratory conditions, while causing headaches, nausea, and eyes, nose and throat irritation. VOCs can even react with certain other airborne chemicals to produce formaldehyde, which is a carcinogen.

How Widespread is Air Pollution?

According to the latest World Health organisation report, 99% of the world’s population live in areas where air pollution exceeds their guideline limits.

Air pollution can vary from place to place. We recently assessed the worst parts of the UK for air pollution, for example. The weather can also have an effect on air pollution. For instance, pollution levels may be higher in the colder months of the year.

Indoor Air Pollution

But air pollution can also affect indoor environments. High concentrations of VOCs can lead to “sick building syndrome”, whereby simply existing in a building can lead to a number of health problems.

Certain workplaces also carry unique air pollution risks. One recent report found that 25% of UK hospitals are located in areas with dangerously high levels of air pollution from traffic and industry. But inside hospitals you’ll find numerous potentially hazardous you won’t find in any other workplace, These might include Isoflurane, Sevoflurane, Penthrox, Entonox and inhalable and respirable dust.

This is Why Air Quality Monitoring is Important

Air pollution is all around us, indoors and outdoors. Even short-term exposure can lead to some serious health problems. Long-term exposure could prove fatal.

But many of the pollutants we’ve discussed in this post are colourless, odourless, or so small that they’re invisible to the human eye.

But with air quality monitoring, you can assess the levels of pollutants in your workplace. And once you understand the levels, and what might be causing them, you can act to improve the air quality for everyone.

Learn more about the work of an air quality consultant. You can also read our essential introduction to how the air quality monitoring procedure works.

Specialist Air Quality Monitoring Services For Hospitals and Healthcare

UK law regulates workplace exposure limits (WELs) for numerous substance.

Control of Substances Hazardous to Health (COSHH) is a UK law requiring employers to prevent or reduce workers’ exposure to certain hazardous substances. We offer specialist workplace exposure monitoring to help you fulfil your COSHH obligations wherever staff are exposed to hazardous substances in your hospital.

We employ both continuous monitoring and personal sampling techniques to prepare a comprehensive report that includes detailed discussions and actionable recommendations based on our findings.

A hospital grade air purifier can help you quickly and thoroughly improve the air quality in any area of your hospital. We stock a range of hospital-grade Blueair HealthProtectTM air purifiers fitted with advanced HEPASilent technology that can catch 99.97% of harmful or toxic particles down to 0.1 microns.

Want to learn more about how we can help you improve air quality in your workplace? Talk to one of our air quality experts today, or get in touch for a free quote.